Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
Int J Cardiol Heart Vasc ; 52: 101419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725439

ABSTRACT

Background: Cardiac troponin I (cTnI) above the 99th percentile is associated with an increased risk of major adverse events. Patients with detectable cTnI below the 99th percentile are a heterogeneous group with a less well-defined risk profile. The purpose of this study is to investigate the prognostic relevance of detectable cTnI below the 99th percentile in patients undergoing coronary angiography. Methods: The study included 14,776 consecutive patients (mean age of 65.4 ± 12.7 years, 71.3 % male) from the Essen Coronary Artery Disease (ECAD) registry. Patients with cTnI levels above the 99th percentile and patients with ST-segment elevation acute myocardial infarction were excluded. All-cause mortality was defined as the primary endpoint. Results: Detectable cTnI below the 99th percentile was present in 2811 (19.0 %) patients, while 11,965 (81.0 %) patients were below detection limit of the employed assay. The mean follow-up was 4.25 ± 3.76 years. All-cause mortality was 20.8 % for patients with detectable cTnI below the 99th percentile and 15.0 % for those without detectable cTnI. In a multivariable Cox regression analysis, detectable cTnI was independently associated with all-cause mortality with a hazard ratio of 1.60 (95 % CI 1.45-1.76; p < 0.001). There was a stepwise relationship with increasing all-cause mortality and tertiles of detectable cTnI levels with hazard ratios of 1.63 (95 % CI 1.39-1.90) for the first tertile to 2.02 (95 % CI 1.74-2.35) for the third tertile. Conclusions: Detectable cTnI below the 99th percentile is an independent predictor of mortality in patients undergoing coronary angiography with the risk of death growing progressively with increasing troponin levels.

2.
Geroscience ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630423

ABSTRACT

Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.

3.
Br J Pharmacol ; 181(11): 1553-1575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519837

ABSTRACT

In 2023, seventy novel drugs received market authorization for the first time in either Europe (by the EMA and the MHRA) or in the United States (by the FDA). Confirming a steady recent trend, more than half of these drugs target rare diseases or intractable forms of cancer. Thirty drugs are categorized as "first-in-class" (FIC), illustrating the quality of research and innovation that drives new chemical entity discovery and development. We succinctly describe the mechanism of action of most of these FIC drugs and discuss the therapeutic areas covered, as well as the chemical category to which these drugs belong. The 2023 novel drug list also demonstrates an unabated emphasis on polypeptides (recombinant proteins and antibodies), Advanced Therapy Medicinal Products (gene and cell therapies) and RNA therapeutics, including the first-ever approval of a CRISPR-Cas9-based gene-editing cell therapy.


Subject(s)
Drug Approval , United States Food and Drug Administration , Humans , Europe , United States
4.
Eur Heart J ; 45(14): 1224-1240, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38441940

ABSTRACT

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.


Subject(s)
Heart Failure , Neoplasms , Humans , Heart Failure/drug therapy , Neoplasms/epidemiology
5.
Curr Heart Fail Rep ; 21(3): 214-223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38430308

ABSTRACT

PURPOSE OF REVIEW: Immune checkpoint inhibitor (ICI) therapy has emerged as a pivotal advancement in cancer treatment, but the widespread adoption has given rise to a growing number of reports detailing significant cardiovascular toxicity. This review concentrates on elucidating the mechanisms behind ICI-related cardiovascular complications, emphasizing preclinical and mechanistic data. RECENT FINDINGS: Accumulating evidence indicates a more significant role of immune checkpoints in maintaining cardiac integrity than previously understood, and new key scientific data are available to improve our understanding of ICI-related cardiovascular toxicity, including hidden cardiotoxicity. New avenues for innovative concepts are hypothesized, and opportunities to leverage the knowledge from ICI-therapy for pioneering approaches in related scientific domains can be derived from the latest scientific projects. Cardiotoxicity from ICI therapy is a paramount challenge for cardio-oncology. Understanding the underlying effects builds the foundation for tailored cardioprotective approaches in the growing collective at risk for severe cardiovascular complications.


Subject(s)
Cardiotoxicity , Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Cardiotoxicity/etiology , Neoplasms/drug therapy
6.
Article in English | MEDLINE | ID: mdl-38379024

ABSTRACT

Although cardiovascular diseases are the leading cause of death worldwide, their pharmacotherapy remains suboptimal. Thus, there is a clear unmet need to develop more effective and safer pharmacological strategies. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2023, including the approval of first-in-class drugs that open new avenues for the treatment of atherosclerotic cardiovascular disease and heart failure. The new indications of drugs already marketed (repurposing) for the treatment of obstructive hypertrophic cardiomyopathy, hypercholesterolemia, type 2 diabetes, obesity and heart failure, the impact of polypharmacy on guideline-directed drug use is highlighted as well as results from negative clinical trials. Finally, we end with a summary of the most important phase 2 and 3 clinical trials assessing the efficacy and safety of cardiovascular drugs under development for the prevention and treatment of cardiovascular diseases.

7.
Nat Rev Cardiol ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279046

ABSTRACT

Immune checkpoint molecules are physiological regulators of the adaptive immune response. Immune checkpoint inhibitors (ICIs), such as monoclonal antibodies targeting programmed cell death protein 1 or cytotoxic T lymphocyte-associated protein 4, have revolutionized cancer treatment and their clinical use is increasing. However, ICIs can cause various immune-related adverse events, including acute and chronic cardiotoxicity. Of these cardiovascular complications, ICI-induced acute fulminant myocarditis is the most studied, although emerging clinical and preclinical data are uncovering the importance of other ICI-related chronic cardiovascular complications, such as accelerated atherosclerosis and non-myocarditis-related heart failure. These complications could be more difficult to diagnose, given that they might only be present alongside other comorbidities. The occurrence of these complications suggests a potential role of immune checkpoint molecules in maintaining cardiovascular homeostasis, and disruption of physiological immune checkpoint signalling might thus lead to cardiac pathologies, including heart failure. Although inflammation is a long-known contributor to the development of heart failure, the therapeutic targeting of pro-inflammatory pathways has not been successful thus far. The increasingly recognized role of immune checkpoint molecules in the failing heart highlights their potential use as immunotherapeutic targets for heart failure. In this Review, we summarize the available data on ICI-induced cardiac dysfunction and heart failure, and discuss how immune checkpoint signalling is altered in the failing heart. Furthermore, we describe how pharmacological targeting of immune checkpoints could be used to treat heart failure.

8.
Geroscience ; 46(1): 191-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38060158

ABSTRACT

The Semmelweis Study is a prospective occupational cohort study that seeks to enroll all employees of Semmelweis University (Budapest, Hungary) aged 25 years and older, with a population of 8866 people, 70.5% of whom are women. The study builds on the successful experiences of the Whitehall II study and aims to investigate the complex relationships between lifestyle, environmental, and occupational risk factors, and the development and progression of chronic age-associated diseases. An important goal of the Semmelweis Study is to identify groups of people who are aging unsuccessfully and therefore have an increased risk of developing age-associated diseases. To achieve this, the study takes a multidisciplinary approach, collecting economic, social, psychological, cognitive, health, and biological data. The Semmelweis Study comprises a baseline data collection with open healthcare data linkage, followed by repeated data collection waves every 5 years. Data are collected through computer-assisted self-completed questionnaires, followed by a physical health examination, physiological measurements, and the assessment of biomarkers. This article provides a comprehensive overview of the Semmelweis Study, including its origin, context, objectives, design, relevance, and expected contributions.


Subject(s)
Healthy Aging , Humans , Female , Male , Universities , Cohort Studies , Prospective Studies , Hungary
9.
Clin Pharmacol Ther ; 115(2): 318-323, 2024 02.
Article in English | MEDLINE | ID: mdl-37975276

ABSTRACT

Influenza infection may lead to serious complications in the postpartum period, therefore, oseltamivir treatment in these patients and their breastfed infants is of great importance. However, the pharmacokinetics of oseltamivir in postpartum lactating women with acute influenza infection, and the consequent infant exposure to oseltamivir are still unknown, and these data would help in assessing risk and the need for dose adjustment in breastfed infants. Six lactating women with influenza-like symptoms, at a standard dose of 75 mg oral oseltamivir twice daily for 5 days, were recruited in this phase IV clinical study during the 2011/2012 H1N1 pandemic seasons. Breast milk/colostrum and venous blood samples were taken at multiple timepoints, maternal urine samples were obtained from total output within the 12-hour observational period following the seventh dose of oseltamivir. Oseltamivir phosphate (OP) reached a maximum 69.5 ± 29.4 ng/mL concentration in breast milk, higher than that found in the plasma, and showed elimination within ~ 8 hours. Oseltamivir carboxylate (active metabolite of OP) showed a lower, nearly steady-state concentration in breast milk during the observational period (maximum plasma concentration (Cmax ) = 38.4 ± 12.9 ng/mL). Based on estimated daily milk consumption of exclusively breastfed infants, their calculated daily exposure is < 0.1% of the infant dose of oseltamivir for treatment of influenza as per marketing authorization. Here, we provide the first maternal breast milk pharmacokinetic data for oral multiple-dose oseltamivir in lactating patients with influenza and showed that its concentration in the breast milk is not sufficient to reach a therapeutic dose for breastfed infants.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Infant , Humans , Female , Oseltamivir , Influenza, Human/drug therapy , Antiviral Agents/pharmacokinetics , Lactation
10.
Clin Res Cardiol ; 113(2): 301-312, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955712

ABSTRACT

BACKGROUND: Cancer therapy-related cardiovascular toxicity (CTR-CVT) from immune checkpoint inhibitor (ICI) therapy is still incompletely characterized, and patients with pre-existing cardiovascular disease represent a particularly high-risk cohort. Valid parameters for risk stratification of these patients are missing. Neutrophil-to-lymphocyte ratio (NLR) has been shown to predict mortality and adverse events in other cardiovascular cohorts. The present study aims to examine the predictive capacity of NLR for risk stratification of patients particularly vulnerable for CTR-CVT under ICI therapy. METHODS: We performed an analysis of 88 cancer patients (69 ± 11 years, 25% female) with pre-existing cardiovascular disease under ICI therapy from the prospective Essen Cardio-Oncology Registry (ECoR). NLR was assessed at patient enrollment and the population was divided through receiver operator characteristic (ROC) curve analysis in patients with low (< 4.57) and high (≥ 4.57) NLR. Endpoint was the whole spectrum of CTR-CVT, according to the European guidelines on cardio-oncology. The median follow-up was 357 days (interquartile range (IQR): 150-509 days). RESULTS: We observed 4 cases of myocarditis, 17 cases of vascular toxicity, 3 cases of arterial hypertension, 22 cases of arrhythmia or QTc prolongation and 17 cases of cardiovascular dysfunction. NLR was associated with overall CTR-CVT by univariable Cox regression (hazard ratio (HR): 1.443; 95% confidence interval (CI) 1.082-1.925; p = 0.013). However, this association was attenuated after adjusting for further confounders. CONCLUSION: NLR is moderately associated with CTR-CVT in cancer patients with pre-existing cardiovascular disease under ICI therapy. Surveillance of NLR during ICI therapy might be an effective and economically biomarker for risk stratification in these high-risk patients.


Subject(s)
Myocarditis , Neoplasms , Humans , Female , Male , Neutrophils , Immune Checkpoint Inhibitors/adverse effects , Prospective Studies , Lymphocytes , Neoplasms/drug therapy , Retrospective Studies
11.
Br J Pharmacol ; 181(3): 345-361, 2024 02.
Article in English | MEDLINE | ID: mdl-37828636

ABSTRACT

BACKGROUND AND PURPOSE: To protect against SARS-CoV-2 infection, the first mRNA-based vaccines, Spikevax (mRNA-1273, Moderna) and Comirnaty (BNT162b2, Pfizer/Biontech), were approved in 2020. The structure and assembly of the immunogen-in both cases, the SARS-CoV-2 spike (S) glycoprotein-are determined by a messenger RNA sequence that is translated by endogenous ribosomes. Cardiac side-effects, which for the most part can be classified by their clinical symptoms as myo- and/or pericarditis, can be caused by both mRNA-1273 and BNT162b2. EXPERIMENTAL APPROACH: As persuasive theories for the underlying pathomechanisms have yet to be developed, this study investigated the effect of mRNA-1273 and BNT162b2 on the function, structure, and viability of isolated adult rat cardiomyocytes over a 72 h period. KEY RESULTS: In the first 24 h after application, both mRNA-1273 and BNT162b2 caused neither functional disturbances nor morphological abnormalities. After 48 h, expression of the encoded spike protein was detected in ventricular cardiomyocytes for both mRNAs. At this point in time, mRNA-1273 induced arrhythmic as well as completely irregular contractions associated with irregular as well as localized calcium transients, which provide indications of significant dysfunction of the cardiac ryanodine receptor (RyR2). In contrast, BNT162b2 increased cardiomyocyte contraction via significantly increased protein kinase A (PKA) activity at the cellular level. CONCLUSION AND IMPLICATIONS: Here, we demonstrated for the first time, that in isolated cardiomyocytes, both mRNA-1273 and BNT162b2 induce specific dysfunctions that correlate pathophysiologically to cardiomyopathy. Both RyR2 impairment and sustained PKA activation may significantly increase the risk of acute cardiac events.


Subject(s)
COVID-19 , Myocytes, Cardiac , Animals , Humans , Rats , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , 2019-nCoV Vaccine mRNA-1273 , RNA , Ryanodine Receptor Calcium Release Channel/genetics , COVID-19/prevention & control , SARS-CoV-2 , Cardiotoxicity , RNA, Messenger
12.
Open Res Eur ; 3: 88, 2023.
Article in English | MEDLINE | ID: mdl-37981907

ABSTRACT

Background: Uveal melanoma is a poor prognosis cancer. Ergolide, a sesquiterpene lactone isolated from Inula Brittanica, exerts anti-cancer properties. The objective of this study was to 1) evaluate whether ergolide reduced metastatic uveal melanoma (MUM) cell survival/viability in vitro and in vivo; and 2) to understand the molecular mechanism of ergolide action. Methods: Ergolide bioactivity was screened via long-term proliferation assay in UM/MUM cells and in zebrafish MUM xenograft models. Mass spectrometry profiled proteins modulated by ergolide within whole cell or extracellular vesicle (EVs) lysates of the OMM2.5 MUM cell line. Protein expression was analyzed by immunoblots and correlation analyses to UM patient survival used The Cancer Genome Atlas (TCGA) data. Results: Ergolide treatment resulted in significant, dose-dependent reductions (48.5 to 99.9%; p<0.0001) in OMM2.5 cell survival in vitro and of normalized primary zebrafish xenograft fluorescence (56%; p<0.0001) in vivo, compared to vehicle controls. Proteome-profiling of ergolide-treated OMM2.5 cells, identified 5023 proteins, with 52 and 55 proteins significantly altered at 4 and 24 hours, respectively ( p<0.05; fold-change >1.2). Immunoblotting of heme oxygenase 1 (HMOX1) and growth/differentiation factor 15 (GDF15) corroborated the proteomic data. Additional proteomics of EVs isolated from OMM2.5 cells treated with ergolide, detected 2931 proteins. There was a large overlap with EV proteins annotated within the Vesiclepedia compendium. Within the differentially expressed proteins, the proteasomal pathway was primarily altered. Interestingly, BRCA2 and CDKN1A Interacting Protein (BCCIP) and Chitinase Domain Containing 1 (CHID1), were the only proteins significantly differentially expressed by ergolide in both the OMM2.5 cellular and EV isolates and they displayed inverse differential expression in the cells versus the EVs. Conclusions: Ergolide is a novel, promising anti-proliferative agent for UM/MUM. Proteomic profiling of OMM2.5 cellular/EV lysates identified candidate pathways elucidating the action of ergolide and putative biomarkers of UM, that require further examination.


The most common form of adult eye cancer is uveal melanoma (UM). Once UM cancer cells spread to organs in the rest of the body, metastatic UM (MUM), there is a poor prognosis for patients with only one approved drug treatment. Hence, it is vital to better understand the cellular and extracellular proteins that regulate UM pathology in order to uncover biomarkers of disease and therapeutic targets. In this original study, we demonstrate a compound called ergolide is capable of severely reducing the metabolic activity and growth of UM cancer cells, grown as isolated monolayers. Ergolide was also able to reduce the growth of human MUM cells growing as tumors in transplanted zebrafish larvae. We identify that ergolide alters specific proteins found in the human UM cells. These proteins once analyzed in detail offer opportunities to understand how new treatment strategies can be developed for UM.

13.
Redox Biol ; 67: 102894, 2023 11.
Article in English | MEDLINE | ID: mdl-37839355

ABSTRACT

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Oxidation-Reduction
14.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762130

ABSTRACT

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Subject(s)
Heart Failure , Male , Rats , Mice , Animals , Rats, Wistar , Heart Failure/genetics , Myocytes, Cardiac , Polymerase Chain Reaction , Hypertrophy
15.
Sci Rep ; 13(1): 16122, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37752166

ABSTRACT

Although systolic function characteristically shows gradual impairment in pressure overload (PO)-evoked left ventricular (LV) hypertrophy (LVH), rapid progression to congestive heart failure (HF) occurs in distinct cases. The molecular mechanisms for the differences in maladaptation are unknown. Here, we examined microRNA (miRNA) expression and miRNA-driven posttranscriptional gene regulation in the two forms of PO-induced LVH (with/without systolic HF). PO was induced by aortic banding (AB) in male Sprague-Dawley rats. Sham-operated animals were controls. The majority of AB animals demonstrated concentric LVH and slightly decreased systolic function (termed as ABLVH). In contrast, in some AB rats severely reduced ejection fraction, LV dilatation and increased lung weight-to-tibial length ratio was noted (referred to as ABHF). Global LV miRNA sequencing revealed fifty differentially regulated miRNAs in ABHF compared to ABLVH. Network theoretical miRNA-target analysis predicted more than three thousand genes with miRNA-driven dysregulation between the two groups. Seventeen genes with high node strength value were selected for target validation, of which five (Fmr1, Zfpm2, Wasl, Ets1, Atg16l1) showed decreased mRNA expression in ABHF by PCR. PO-evoked systolic HF is associated with unique miRNA alterations, which negatively regulate the mRNA expression of Fmr1, Zfmp2, Wasl, Ets1 and Atg16l1.


Subject(s)
Heart Failure, Systolic , MicroRNAs , Male , Rats , Animals , Heart Failure, Systolic/genetics , Rats, Sprague-Dawley , Gene Expression Regulation , Hypertrophy, Left Ventricular , MicroRNAs/genetics , RNA, Messenger , Weight Gain , Fragile X Mental Retardation Protein
16.
Vascul Pharmacol ; 153: 107223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678516

ABSTRACT

With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.


Subject(s)
Antineoplastic Agents , Heart Diseases , Heart Failure , Neoplasms , Humans , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Antineoplastic Agents/adverse effects , Heart , Heart Diseases/chemically induced , Neoplasms/drug therapy , Neoplasms/complications
19.
Article in English | MEDLINE | ID: mdl-37169875

ABSTRACT

Cardiovascular diseases (CVD) remain the leading cause of death worldwide and pharmacotherapy of most of them is suboptimal. Thus, there is a clear unmet clinical need to develop new pharmacological strategies with greater efficacy and better safety profiles. In this review, we summarize the most relevant advances in cardiovascular pharmacology in 2022 including the approval of first-in-class drugs that open new avenues for the treatment of obstructive hypertrophic cardiomyopathy (mavacamten), type 2 diabetes mellitus (tirzepatide), and heart failure (HF) independent of left ventricular ejection fraction (sodium-glucose cotransporter 2 inhibitors). We also dealt with fixed dose combination therapies repurposing different formulations of "old" drugs with well-known efficacy and safety for the treatment of patients with acute decompensated HF (acetazolamide plus loop diuretics), atherosclerotic cardiovascular disease (moderate-dose statin plus ezetimibe), Marfan syndrome (angiotensin receptor blockers plus ß-blockers), and secondary cardiovascular prevention (i.e. low-dose aspirin, ramipril and atorvastatin), thereby filling existing gaps in knowledge, and opening new avenues for the treatment of CVD. Clinical trials confirming the role of dapagliflozin in patients with HF and mildly reduced or preserved ejection fraction, long-term evolocumab to reduce the risk of cardiovascular events, vitamin K antagonists for stroke prevention in patients with rheumatic heart disease-associated atrial fibrillation, antibiotic prophylaxis in patients at high risk for infective endocarditis before invasive dental procedures, and vutrisiran for the treatment of hereditary transthyretin-related amyloidosis with polyneuropathy were also reviewed. Finally, we briefly discuss recent clinical trials suggesting that FXIa inhibitors may have the potential to uncouple thrombosis from hemostasis and attenuate/prevent thromboembolic events with minimal disruption of hemostasis.

20.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239853

ABSTRACT

Duchenne muscular dystrophy (DMD) is characterized by wasting of muscles that leads to difficulty moving and premature death, mainly from heart failure. Glucocorticoids are applied in the management of the disease, supporting the hypothesis that inflammation may be driver as well as target. However, the inflammatory mechanisms during progression of cardiac and skeletal muscle dysfunction are still not well characterized. Our objective was to characterize the inflammasomes in myocardial and skeletal muscle in rodent models of DMD. Gastrocnemius and heart samples were collected from mdx mice and DMDmdx rats (3 and 9-10 months). Inflammasome sensors and effectors were assessed by immunoblotting. Histology was used to assess leukocyte infiltration and fibrosis. In gastrocnemius, a tendency towards elevation of gasdermin D irrespective of the age of the animal was observed. The adaptor protein was elevated in the mdx mouse skeletal muscle and heart. Increased cleavage of the cytokines was observed in the skeletal muscle of the DMDmdx rats. Sensor or cytokine expression was not changed in the tissue samples of the mdx mice. In conclusion, inflammatory responses are distinct between the skeletal muscle and heart in relevant models of DMD. Inflammation tends to decrease over time, supporting the clinical observations that the efficacy of anti-inflammatory therapies might be more prominent in the early stage.


Subject(s)
Muscular Dystrophy, Duchenne , Mice , Rats , Animals , Muscular Dystrophy, Duchenne/metabolism , Inflammasomes/metabolism , Mice, Inbred mdx , Rodentia/metabolism , Muscle, Skeletal/metabolism , Inflammation/metabolism , Cytokines/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...